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Abstract. The two-dimensional (2D) Heisenberg model with exchange anisotropy1 =
1− J x/J z (J < 0) and S = 1/2 is studied by the quantum Monte Carlo method. Energy
and spin–spin correlation functions are calculated. The staggered magnetizationσ dependence
1/σ = 1+ 0.13(1) ln(1/1) on anisotropy exchange is determined.

1. Introduction

In recent times the two-dimensional (2D) quantum spin Heisenberg antiferromagnet (AF)
has attracted a great deal of attention in connection with the antiferromagnetic properties
of materials with high-temperature superconductivity. Although according to Mermin
and Wagner’s [1] magnetic theorem the long range order (LRO) at finite temperatures
is excluded for the isotropic Heisenberg magnet in 2D, numerous theoretical ground-state
(GS) investigations of the 2D Heisenberg AF confirm the existence of LRO atT = 0 [2–5].
However, a proof for antiferromagnetic LRO in the GS of the Heisenberg AF is available
at present only forS > 1 [6] in the isotropic case or for an anisotropic exchange in the
extreme quantum caseS = 1/2 [7].

Numerical techniques: an exact diagonalization, usually employing Lanczos-like
methods [8, 9], and a number of quantum Monte Carlo (MC) methods [5, 10–12] are used for
study of the 2D isotropic AF. Exact diagonalization studies are limited to small lattices, since
the Hilbert space grows exponentially with the number of sites. MC methods allow us to
study very large systems, although application is mostly limited to nonzero temperatures and
to study of the isotropic AF. Thus, the nature of the ground state of the 2D antiferromagnet
remains unclear. The rather significant quantum fluctuations due to low dimensionality and
due to low spin can completely destroy the long range order. Some authors on the basis of
analytical methods and the majority of numerical calculations obtain AF order, but others
infer the absence of LRO [13, 14].

How can the isotropic 2D Heisenberg model describe the staggered magnetization
observed in powder diffraction at low temperatures in La2CuO4 [15] and Er2CuO4 [16]?
The interplanar couplingJ ′ is of the order of 10−5 J that is very much less than Ising-like
exchange anisotropy1 = 1−J x/J z ∼ 10−4 J [15]. So we need to consider the role of Ising-
like anisotropies to study most of the thermodynamic properties of 2D antiferromagnets with
CuO2 planes.
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In the paper the quantum Monte Carlo method, using the trajectory algorithm [17]
is applied. The algorithm’s main idea is based on a transformation of the quantum D-
dimensional problem to the classicalD+ 1-dimensional one, by using ‘temporary ’ cuts in
the space of imaginary time 0< τ < 1//T and then realization of an MC procedure in the
space ‘imaginary time–coordinate’ is carried out.

2. Model and method

We shall consider the anisotropic 2D Heisenberg model with negative interactions between
nearest neighbours (J < 0) on a square lattice with a sites occupied by spinsS = 1/2,
directed along an axisOZ. The Hamiltonian looks like:

H = −1

2

4∑
h=1

N∑
i=1

{J zz(h)Szi Szi+h + J x,y(h)(Sxi Sxi+h + Syi Syi+h)}

where1 = 1 − J x/J z is the anisotropy of an ‘easy axis’ exchange andN is the total
number of spins.

The algorithm and MC method have been considered in detail earlier [18, 19]. MC
calculations are based on the following Trotter formula [20]:

exp(A1+ A2+ A3+ · · · + Ap) = lim
m→∞[exp(A1/m) exp(A2/m) exp(A3/m) . . .

× exp(Ap/m)]
m

and the parameterm is called the ‘Trotter number’. Hamiltonian is divided into a four spin
subsystem

H = Hx
even +Hy

even +Hx
odd +Hy

odd

whereHx,y
even denotes the sum over four spins on even squares in thex- or y-direction and

H
x,y

odd takes care of the odd squares. We used three kinds of flip into MC procedure. A
‘global flip’ involves 4m spins aligned in the Trotter direction and changes the value of
Mz by creating or annihilating a string of down-spins. The deformation and displacement
of the strings are taken into account by a ‘local flip’, which flips two adjacent spins, and
also by a ‘loop flip’, which flips six spins. The MC calculations were performed on the
sequence of a lattices linear size ofL = 40, 48, 64, 80 andm = 16, 32, 48 with a periodic
boundary condition. For each lattice we used from 1000 to 3000 steps to equilibrate and
another from 2000 to 7000 steps to calculate the averages. One MC step is determined by
turning all spins on a lattice of dimensionsL× L× 4m.

The following quantities were calculated: the energy, the spin–spin correlation functions
of the longitudinal and transverse spin components〈Sα(0)Sα(r)〉 along the directions of the
lattice sides; the staggered magnetization

σ = 2 lim
r→∞
√

abs〈Sz(0)Sz(r)〉.

The MC method offers three kind of error. The error due to quantum fluctuations yields
an estimate∼A/(mT )2 and forT/J = 0.1 it is approximately equal to 2%. The root-mean-
square error of the energy is within∼0.1%, the staggered magnetization∼1%.The error
due to finite lattice size can be minimized since we made simulations for correlation radius
ξ < L/2.
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3. Results and discussion

The energy and the spin correlation functions of the anisotropic AF atT → 0 we shall
determine from the extrapolation of these values estimated for the anisotropic AF at low
temperature. We shall calculate temperature dependences of the energy, of the staggered
magnetization and of the spin–spin correlation functions for several parameters of anisotropic
exchange1 > 0.005 and for four lattice sizes and for threem. In extrapolating the data
with different Trotter numberm, we have used the following 1/m2-theorem proved by M
Suzuki [20]:

Cm = C + a/m2+ b/m4+ p/m6+ · · ·
whereCm is the value obtained for the finite decomposition. At every temperature we
perform 1/m2-extrapolation. The typical dependences are represented in figure 1.

Figure 1. Dependence of the energyE/NJ for exchange anisotropy1 = 0.02(1), 0.075(2)
and the staggered magnetization of an AFσ for 1 = 0.05(1), 0.15(3), 0.25(2) on temperature.

In the range of low temperatures, smaller than the energy gap between the GS and
excited stateT < 4SJ

√
1(1+ 1), the calculated valueA is interpolated by the power

low A = A(T = 0) − αT β and the exponential lawA = A(T = 0) − α exp(−β/T )
(in the inset of figure 1 it is represented by a dotted line) with three fitted parametersα,
β andA at T → 0. At these parameters the long spin-wave density is fairly small and
they yield an exponentially small contribution to the thermodynamic properties of the 2D
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Figure 2. The energyE/NJ and the correlation functions of the nearest neighbour〈Sz(0)Sz(r =
1)〉 of an AF atT → 0 against exchange anisotropy1 = 1− J x/J z. The curve shown is the
estimated second-order spin-wave (SW) prediction [21].

Figure 3. The staggered magnetization (in the inset 1/σ against ln(1)) of an AF against
exchange anisotropy1 = 1− J x/J z; the curve is SW [21].

antiferromagnet, therefore the quantities of the energy and of the staggered magnetization
are practically independent of the lattice size used by the MC procedure. Choice of the
interpolation is based on the least value of the root-mean-square EMSδA error.

The extrapolated quantitiesE and 〈Sz(0)Sz(r)〉 of the anisotropic AF are represented
in figure 2 atT → 0. They are interpolated by the following functionA = A(1 =
0) ± 1/ exp(α/1β) with fitted parametersα, β andA(0). The quantities of parameters
are accordingly equal: for the energyα = 1.61(7), β = 0.26(5); for the correlation
functions〈Sz(0)Sz(r)〉 α = 2.(1), β = 0.165(7). The energy of the 2D isotropic Heisenberg
modelE = −0.684(6) at T → 0 agrees well with the theoretically predicted value by
the exact diagonalization methodE = −0.684 45 [8]. The spin–spin correlation function
〈Sz(0)Sz(r)〉 = −0.120(4) is in agreement with the result〈Sz(0)Sz(r)〉 = −0.114 [3]. In
figure 2 our results are compared with spin-wave (SW) analysis (to second order in 1/S) [21].
The discrepancy may be because of the effect of theoretical correlations in SW are fairly
weakly taken into consideration. So the Néel temperatureTN/J = 0.5 estimated by the
spin-wave theory for the Ising case does not agree with the exact resultTN/J = 0.564 [22].
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The calculated inverse value of the staggered magnetization fits well to a straight line in
the coordinates 1/σ − ln(1) shown in the inset of figure 3. The staggered magnetization is
interpolated by some functions: the exponential lawσ = 1− A/ exp(B1), the polynomial
of degree four and the logarithmic law 1/σ = 1+0.13(1) ln(1/1) (figure 3), which provided
the least root-mean-square error. The logarithmic law is based only on numerical grounds
and does not appear yet in the literature. The disagreement between the spin-wave data and
our results may be due to nonlinear excitation, for example thermally excited skyrmions
[23, 24]. The staggered magnetization isσ = 0.58(6) µB for the value of the exchange
anisotropy1 = 0.005. The calculated values of the staggered magnetizationσ = 0.45 µB
agree well with experimentally determined valuesσ = 0.44 µB [15] for La2CuO4 with
exchange anisotropy1 ∼ 10−4.

So, summarizing, the staggered magnetization of the anisotropic AF depends on
exchange anisotropy according to the logarithmic law 1/σ = 1+0.13(1) ln(1/1) atT → 0.
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